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The increasing popularity of carbon nanotubes has created a demand for a 
fundamental understanding of thermal transport characteristics in 
nanostructured materials. However, the effects of impurities, misalignments, 
and structure factors on the thermal conductivity of carbon nanotube films and 
fibers are still poorly understood. In this article, carbon nanotube films and 
fibers were produced, and the thermal conductivity was determined using the 
parallel thermal conductance technique. The effects of carbon nanotube 
structure, purity, and alignment on the heat conduction properties were 
investigated to understand thermal transport characteristics in the 
nanostructured material. The importance of bulk density and cross-sectional 
area was determined experimentally. The results indicated that the prepared 
carbon nanotube films and fibers are highly efficient at conducting heat. The 
structure, purity, and alignment of carbon nanotubes played a fundamentally 
important role in determining the heat conduction properties of carbon films 
and fibers. Single-walled carbon nanotube films and fibers had higher thermal 
conductivity, while the presence of non-carbonaceous impurities degraded the 
thermal performance due to the low degree of bundle contact. The thermal 
conductivity may present power law dependence with temperature. The 
specific thermal conductivity decreased with increasing bulk density. A 
maximum specific thermal conductivity was obtained at room temperature, but 
Umklapp scattering occurred. The fibers have better specific thermal 
conductivity properties than the films due to the increased degree of bundle 
alignment. 
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1. Introduction

Carbon nanotubes can exhibit a unique ability to conduct heat [1][2], referred to as heat conduction properties. A 
thermal barrier is formed in the radial direction and it was reported that thermal conductivity of an individual single-
walled carbon nanotube is around 1.52 W/(m·K) in the radial direction at room temperature [3]. In contrast, the 
thermal conductivity in the longitudinal direction is around 3500 W/(m·K) at room temperature [4]. Therefore, 
carbon nanotubes show superior heat conduction properties along the longitude directions. Consequently, carbon 
nanotubes outperform diamond as the best thermal conductor. When macroscopic, ordered assemblies are formed, 
the thermal conductivity could reach up to around 1500 W/(m·K) at room temperature [5]. The heat conduction 
properties of carbon nanotube networks vary significantly, with a minimum of thermal conductivity less than 0.1 
W/(m·K) [6]. The heat conduction properties depend on a variety of factors such as impurities and misalignments. 
Single-walled carbon nanotube are stable up to around 1000 K in air and around 3000 K in vacuum [7]. The study of 

https://e-namtila.com/
https://applied.dysona.org/
http://dx.doi.org/10.30493/DAS.2022.327865
http://creativecommons.org/licenses/by/4.0/
mailto:cjjtpj@163.com


DYSONA – Applied Science 3 (2022) 46-55  Chen  
 

 47  
 
 

heat transport phenomena involved in carbon nanotubes is an active area of interest [8] due to the potential for 
applications in thermal management. 

Carbon nanotubes have unique thermal properties, potentially making this nanostructured material useful in thermal 
management applications such as nanofluids. Traditional fluids play an important role in many industry fields, but 
their inherently low thermal conductivity seriously hampers the development of energy-efficient heat transfer fluids. 
However, the heat conduction properties can be improved significantly by dispersing nanoparticles, such as carbon 
nanotubes, in fluids [9][10]. Dispersion can be achieved by physical and chemical treatments. Fluids containing 
nanoparticles present substantial advantages over traditional fluids in terms of thermal conductivity and heat-
transfer capability [11][12]. The thermal conductivity can be substantially increased, which is crucial in applications 
with high heat-transfer capability demand [13][14]. For example, nanofluids in solar collectors is an important 
application [15][16] in which nanofluids are employed for their tunable optical properties [17][18]. Nanoparticles of 
various materials have been used to produce nanofluids, such as titania, copper, aluminum, copper oxide, aluminum 
oxide, and carbon nanotubes. Of these nanoparticles, carbon nanotubes hold the greatest promise due to their unique 
heat conduction properties. 

The thermal conductivity of carbon nanotubes depends heavily upon crystallographic defects. Phonons can scatter 
due to crystallographic defects leading to an increased relaxation rate, thereby decreasing thermal conductivity 
associated with the reduced mean free path of phonons [19][20]. In single-walled carbon nanotubes, the mean free 
path varies from 50 nm to 1500 nm [21][22]. Crystallographic defects will lead to a significant reduction in the mean 
free path [23], for example, 4 nm or less [24]. The thermal conductivity of carbon nanotubes also depends upon the 
structure of the nanotubes. The thermal conductivity of multi-walled carbon nanotubes is significantly higher than the 
sum of each shell due to the inter-wall interactions [25]. With an identical diameter configuration, single-walled 
carbon nanotubes have better heat conduction properties [26] due to an increase in cross-sectional area. 

Bulk carbon nanotubes can be used as composite fibers in polymers [27][28], but the bulk structure will reduce the 
ability to conduct heat, causing a decrease in thermal conductivity [29][30]. The thermal conductivity of carbon 
nanotube fibers is comparable to that of common metals [31]. However, through chemical modification, the ability to 
conduct heat is comparable to or higher than that of highly conductive metals such as copper [32]. The thermal 
conductivity varies significantly depending upon the density and cross-sectional area of the bulk material. The bulk 
carbon nanotube material contains pores [33][34]. Consequently, the thermal conductivity of the non-compact bulk 
material is much lower than that of the skeletal material [35][36] since the bulk volume is inclusive of the void 
fraction. The skeletal portion of the bulk material is often referred to as the "matrix" or "frame" [37][38]. However, 
there is considerable uncertainty in the determination of the density of the bulk material [39][40]. Consequently, the 
effects of carbon nanotube structure, purity, and alignment on the thermal conductivity of carbon films and fibers are 
still poorly understood. Little research has been conducted to determine which parameters are important for high 
thermal conductivity. 

This study relates to the heat conduction properties of carbon nanotube films and fibers. Carbon nanotube films and 
fibers were produced, and the thermal conductivity was measured using a steady-state method. The effects of carbon 
nanotube structure, purity, and alignment on the thermal conductivity were investigated to understand the 
characteristics of thermal transport in the nanostructured material. The objective is to gain insight into the 
fundamental characteristics of thermal transport in carbon nanotubes. Particular emphasis is placed on the 
dependence of thermal conductivity on carbon nanotube structure, purity, and alignment, with an attempt to improve 
the heat conduction properties for carbon nanotube films and fibers. 

2. Experimental methods 

2.1. Preparation of films and fibers 

Carbon nanotube films were produced by spinning continuously onto a single rotational winder of a spinning 
machine. The preparation process of carbon nanotube films is depicted schematically in Fig 1. A dense film was laid 
down with aligned carbon nanotube bundles. The dense film was sprayed with acetone to condense the carbon 
nanotube networks further. The carbon nanotubes were highly aligned by preparing a dense film in such a manner 
[41], although the surface tension effect is significant in the extrusion process [42]. A laser was used to cut the carbon 
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nanotube film into small pieces to measure 
thermal conductivity. Carbon nanotube fibers 
were produced by stretching the dense film 
with two rotational winders of the spinning 
machine. The two rotational winders operate 
with only a small difference in rotation rate. 

2.2. Material characterization 

The prepared carbon nanotube fibers' 
characterizations and surface morphology 
were determined using scanning electron 
microscopy (SU3800, Hitachi High-Tech 
Corporation). 

2.3. Thermal conductivity 
measurement methods 

Since the diameter of the needle-like samples 
was extremely small, the parallel thermal 
conductance technique [43][44] was 
employed to determine the thermal 
conductivity. Fourier's Law was used to 
compute the thermal conductivity. This 
steady-state method has been carried out to 
measure the thermal conductivity of boron 
nitride nanotube sheets [45], carbon 
nanotube sheets [46], and yarns [47][48]. 
The configuration of the measurement 
system is depicted schematically in Fig. 2. A 
preliminary measurement was performed 
with respect to the sample holder itself so as 
to determine the background or baseline 
heat conduction and losses. The sample was 
attached, and the thermal conductance was 
measured. In this method, all conductance 
factors arising from the system are accounted for. The radiative heat losses were caused primarily by the thermal 
radiation from the hot surface of the heater. However, such heat losses were already included in the baseline. 
Therefore, a correction factor of 0.5 was introduced into the method [43][44] to account for the radiative heat losses. 

2.3. Linear mass density measurement methods 

The linear mass density of the carbon nanotube films was measured using a gravimetric method [49]. On the other 
hand, the linear mass density of the carbon nanotube fibers was measured using a vibroscope method [49][50]. The 
fundamental frequency was measured. The specific thermal conductivity is defined as the thermal conductivity 
normalized by bulk density. The bulk density can be determined in terms of the linear mass density and the cross-
sectional area. 

 

 

 

 

Figure 1. Schematic illustration of the preparation process of carbon 
nanotube films. A dense film was laid down with aligned carbon 
nanotube bundles. 

 

Figure 2. Schematic illustration of the configuration of the measurement 
system using parallel thermal conductance technique. 
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3. Results and Discussion

3.1. Material characterization

The carbon nanotubes showed highly alliance. However, the fiber material contains a relatively small amount of short, 
deformed carbon nanotubes. The carbon nanotubes are of the order of several hundred microns (Fig. 3). 

Figure 3. Scanning electron microscopy images of the prepared carbon nanotube fibers. 

Four samples are prepared with different structures, 
purity, and alignment. Three structural parameters 
are selected in terms of alignment, purity, and the 
number of walls (Fig. 4). For type A, the carbon 
nanotube films or fibers are composed mostly of 
multi-walled carbon nanotubes. In addition, there is a 
small amount of short deformed carbon nanotubes. 
For type B, a mixture of carbon nanotubes is used. 
Specifically, the carbon nanotube films or fibers are 
composed of single-walled and multi-walled carbon 
nanotubes. In addition, there is a small amount of 
amorphous carbon. For type C, the carbon nanotube 
films or fibers are composed mostly of single-walled 
carbon nanotubes. In addition, there is a small amount 
of non-carbonaceous impurities. For type D, the 
carbon nanotube films or fibers are composed of 
single-walled carbon nanotubes with high purity. 
Understanding which parameters are important for 
high thermal conductivity is made possible by 
comparing heat conduction properties between the 
nanostructured materials. 

3.2. Thermal conductivity of films 

The effects of structure, purity, and alignment on the specific conductivity of carbon nanotube films are illustrated in 
(Fig. 5 A) at different temperatures. The specific conductivity of the A-type film was lower than that of the other tested 
film types. Multi-walled carbon nanotubes generally have low thermal conductivity. Therefore, the specific 
conductivity A-type film was lower compared to films composed of single-walled carbon nanotubes. The specific 
conductivity of the D-type was higher than other tested film types. This superiority is due to the lack of non-
carbonaceous impurities, which reduce the degree of bundle contact between single-walled carbon nanotubes and 

Figure 4. Structural parameter space for the investigated 
selection of samples in the style of the design of measurement 
experiments. 
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degrade the thermal performance of the C-type 
film. It is noted that specific thermal conductivity 
increased with the increase of test temperature in 
all types; however, the differences between the 
studied types in terms of specific conductivity also 
increased. For instance, the specific conductivity of 
D-type film at around 210 K was similar to that of 
A-type at 300 K. These results further highlight the 
importance of structure and purity in enhancing 
specific conductivity, especially at higher 
temperatures. 

The effect of temperature on thermal conductivity 
for the carbon nanotube films is illustrated in (Fig. 
5 B). The power law index was 1.87, 0.99, 1.80, and 
1.96 for the thermal conductivity of the A, B, C, and 
D type films, respectively. Therefore, the thermal 
conductivity of all films presents power law 
dependence with temperature except for that of 
the B-type. The small value in B-type refers to a 
reduction in the propagation of phonons 
dimensionality [51][52] due to an increase in the 
degree of bundle alignment and contact. On the 
other hand, the power law index was the largest, 
although the small degree of bundle alignment, 
which reduces the mechanical stiffness of the film 

The effect of bulk density on the specific thermal 
conductivity of the tested carbon nanotube films at 
room temperature is illustrated in (Fig. 5 C). The 
highest specific conductivity was achieved in D-
type film. The lowest specific conductivity was 
obtained for the A-type film. A tentative 
explanation could be made for the distinctive 
phenomenon as the specific thermal conductivity 
decreases by increasing bulk density. The low bulk 
density of the D-type film compensates for the 
adverse effect of poor alignment on specific 
thermal conductivity. Therefore, the bulk density 
may be controlled to produce carbon nanotube 
films with high thermal conductivity. 

3.3. Thermal conductivity of fibers 

The specific conductivity of the tested fibers was 
around 10 W·cm2/(K·g) at room temperature (Fig. 
6 A), which is comparable to or higher than that of 
pristine and chemically modified carbon nanotube 
fibers [31][ 32]. A maximum specific thermal 
conductivity was obtained at room temperature, 
which corresponds with previous reports [32][52]. 
The maximum specific thermal conductivity 
represented by the peaks indicates the onset of 
Umklapp scattering. The Umklapp scattering is the 

Figure 5. The effects of carbon nanotube films structure, purity, and 
alignment on specific thermal conductivity at different 
temperatures (A), thermal conductivity at different temperatures 
(The thermal conductivity is indicated with points plotted on a 
logarithmic coordinate system) (B), and the effect of bulk density 
on the specific thermal conductivity of the studied films at room 
temperature (C).  
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dominant thermal resistivity process, limiting the 
specific thermal conductivity. The high thermal 
conductivity of carbon fibers is often associated 
with a high modulus of elasticity [53][54]. 
Therefore, the carbon nanotube fibers have 
sufficient strength to be used as a reinforcement 
for composite materials. The specific conductivity 
of the fibers was higher than that of the films. 
This increase is caused by the improved degree of 
bundle alignment for the fibers. A high degree of 
bundle alignment will lead to an increase in 
thermal conductivity due to the increased 
interfacial area between the carbon nanotubes. 

The effect of cross-sectional area on the specific 
thermal conductivity for the carbon nanotube 
films and fibers at room temperature is 
illustrated in (Fig 6 B). Previous data was also 
included for comparison [32][47][48][55-58]. 
Under the same cross-sectional area conditions, 
the specific conductivities of the films and fibers 
were higher than those previously reported in 
the literature. The carbon nanotubes were of the 
order of several hundred microns, which is 
significantly greater than the phonon mean free 
path. As the length of carbon nanotubes 
increases, the effect of temperature on thermal 
conductivity becomes more pronounced [4][58]. 
The length of the carbon nanotubes contained in 
tested films and fibers was much greater than 
that of previous reports. Consequently, the 
current films and fibers were highly efficient at 
conducting heat and typically have a higher 
specific thermal conductivity in comparison to 
the previous data. 

4. Conclusions

Carbon nanotube films and fibers were produced, and the thermal conductivity was measured using a steady-state 
method. The effects of carbon nanotube structure, purity, and alignment on the heat conduction properties of carbon 
films and fibers were investigated to understand thermal transport characteristics in the nanostructured material. 
The major conclusions are summarized as follows: 

 Multi-walled carbon nanotube films and fibers generally have low thermal conductivity.

 The presence of non-carbonaceous impurities reduces the degree of bundle contact between carbon nanotubes,
increasing thermal resistance at the interface junctions and degrading thermal performance.

 The thermal conductivity presents power law dependence with temperature or has a linear relationship with
temperature.

 The specific thermal conductivity decreases with increasing bulk density. Low bulk density can compensate for the
adverse effect of poor alignment on specific thermal conductivity.

 A maximum specific thermal conductivity is obtained at room temperature because of Umklapp scattering.

Figure 6. The specific thermal conductivity of the carbon nanotube 
fibers at different temperatures (A) and the effect of cross-sectional 
area on the specific thermal conductivity of the carbon nanotube 
films and fibers at room temperature (Some previous data are also 
included for comparison) (B). 
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 The specific thermal conductivity of the fibers is significantly higher than that of the films. The improved thermal
properties are caused by the increased degree of bundle alignment.

 The prepared carbon nanotube films and fibers efficiently conduct heat due to the higher length factor.
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