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Agricultural waste is a major environmental challenge, especially in developing 
countries. Lignocellulose biomass is a low-cost bioresource with great potential 
for bioethanol and bioproducts production. However, the high costs of the 
enzymic treatment restrict agricultural mass utilization. MixAlco process 
applied methane-inhibited route to convert environmental waste into 
carboxylate salts under non-sterile anaerobic fermentation conditions. In this 
study, the lime-treated agricultural residue of white sorghum biomass (80%) 
supplemented by chicken manure (20%) was fermented under anaerobic 
conditions in a stirred-tank bioreactor. The fermentation process resulted in an 
acid concentration of 21.03 g/L at a conversion rate of 54.4 % for the initial 
volatile solids. The fermentation products constituted mainly of acetic acid, 
followed by propanoic acid and ethanol. The current research indicates that the 
MixAlco biotechnology that uses mixed agricultural wastes as a fermentation 
material provides an economical substitute to chemicals and physical 
processing methods. 
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1. Introduction 

Bioethanol is a raw material for various food and pharmaceutical industries and has gained significant interest as a 
biofuel due to its economic and environmental advantages compared to fossil fuels. Biofuels reduce environmental 
pollution by reducing greenhouse gasses emission [1]. Its use is also an economical substitute for oil, especially in 
non-producing countries or those facing difficulties in extracting fossil fuels. The production of biofuels depends on 
the fermentation of sugars in various types of biomasses to produce bioethanol, biodiesel, and biogas. Many raw bio-
materials contain lignocellulose biomass, such as wood, agricultural wastes, municipal solid wastes, and marine algae 
[2]. Bioethanol production process includes pretreatment stages, hydrolysis, fermentation, and product separation. 
The traditional converting of agricultural residues is usually done through simultaneous saccharification and 
fermentation (SSF) systems using costly specialized enzymes, which represents the most critical limitations in 
utilizing agricultural waste in bio-conversion [3][4].  

Carboxylate platform (MixAlco) uses microbial cultures to convert lignocellulose biomass in agricultural residues to 
carboxylic acids under anaerobic fermentation conditions [5]. The main advantages of this process are that no need 
for sterile conditions or specific enzymes for fermentation, in addition to its capability of processing various sources 
of lignocellulose biomass for biofuel and bioproducts production [6][7]. Carboxylate platform development went 
through gradual stages from laboratory investigation (1991), pilot-scale (90.7 kg/day) (1998), demonstration plants 
(5 ton/day) (2007), and high capacity demonstration plant (100 ton/day) (2009) [6][8]. Furthermore, this technique 
was proven to be economically viable at both large and small scales to recycle various waste products [9][10]. It can 
convert concentrated carboxyl salts into a variety of useful chemicals and fuels [11].  
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Various carbohydrates and nutrients like protein, vitamins, and minerals are required to ferment raw material in 
MixAlco efficiently. Agricultural residues are rich in carbohydrates but low in the crucial nutrients for microbial 
growth. On the other hand, animal manure contains huge sums of supplements [12]. Therefore, the use of agricultural 
residues and animal manure combinations is considered an economically viable and environmentally friendly solution 
for the production of carboxylic acids, ketones, and mixed alcohols via carboxylate platforms [13]. The recommended 
ratio is 80%: 20% of the agricultural waste and animal manure, respectively [8][13]. The fermentation is a crucial 
aspect of the MixAlco process, which depends on the microbial community to convert environmental waste biomass to 
carboxylate compounds. Then, biofuel can be prepared whenever the chemical conversion of intermediate compounds 
occurs [14]. 

White sorghum has been the preferred crop biomass for fermentation to obtain methanol and ethanol [15-17]. 
Additionally, sorghum is among the highly adaptable cereal grasses [18][19]. The adaptation of the sorghum plant to 
semi-humid and semi-arid climates has expanded the geographical area for its production and its superiority over 
other types of grains. Sorghum requires no specific soil qualities or high fertilizer input. Additionally, sorghum 
demands minimal water requirement per dry tone of the crop, which is half the water requirement of sugar beet and 
one-third that of sugarcane or corn [20]. All the aforementioned reasons, in addition to the high yield (70-80 tons/ha 
of fresh matter) rendered sorghum as an economically viable crop for the production of biofuel [21].        

Various organic material sources were used in MixAlco process [22], such as brown algae [10][23], sugarcane bagasse 
[24], corn stover [25][26], and many other agricultural byproducts.  This study aimed to investigate the validity of 
using MixAlco process to produce different useful chemical compounds from biotreated sorghum biomass following 
the anti-methane pathway. 

2. Materials and Methods

2.1. Agricultural materials

White sorghum biomass (stalks, leaves, and grains) was obtained from a local market, placed separately in plastic 
bags, and stored in the freezer at -18 °C and relative humidity of 70% until used. White sorghum biomass was dried in 
an oven at 60 °C for 24h to remove moisture content. Then, the dry parts were milled separately using a blender and 
sieved through a 20 mesh screen (0.9 mm) [27][28]. The resulting white sorghum powder was treated with lime at a 
rate of 0.1 g Ca(OH)2 and 10 mL of water per gram of white sorghum. The chicken manure was obtained from the local 
market and dried at 105 °C in an oven, and placed in a tightly sealed container for further use. 

2.2. Inoculum preparation for fermentation 

Fermentation was initiated in batch approach with a concentration of 100g solids/l000 ml distilled water. Solids 
mixture was prepared with 90% lime-treated white sorghum biomass (1:1:0.5) of stalk: leaves: seeds (90g) and 10% 
analytical grade yeast extract powder (10g). Solids were added to a liter of water and inoculated with a pure culture of 
Trichoderma harzianum. This fermentation inoculum was incubated at 30±2 ºC for 7 days under non-sterile batch 
fermentation conditions to augment the natural microbial community coexisting with plant material [24]. 

2.3. The fermentation medium 

The fermentation was conducted in a 1-L LAMBDA MINIFOR stirred tank bioreactor fermenter (Fig. 1). The 
fermentation medium consisted of lime-treated white sorghum biomass (at the same ratios above) and chicken 
manure at a ratio 80:20 g:g of sorghum to chicken manure in 500mL of water. Additionally, a nutrient mixture (50 ml) 
was added during the anaerobic fermentation as a supplementary nutrient source for the microorganisms. Nutrient 
mixture was prepared following [29], the mixture contained; KH2PO4 (16.3g), (NH4)2SO4 (16.3g), NaC1 (32.6g), 
MgSO47H2O (6.8g), CaC12H2O (4.4g), p-aminobenzoic acid (0.71g), Ca-pantothenate (0.71g), folic acid (0.35g), 
nicotinamide (0.71g), pyridoxal (0.35g), riboflavin (0.35g), thiamine (0.34g), biotin (0.14g), EDTA (0.35g), FeSO47H2O 
(0.14g), MnC12 (0.14g), CoC12 (0.014g), ZnSO47H2O (0.007g), NaMoO4 (0.0021g) and CuC12 (0.0007g) per liter. 
Furthermore, Sodium sulfide (0.275 g/L) and cysteine hydrochloride (0.275 g/L) were added under continuous 
nitrogen purge to support the anaerobic conditions of the fermentation medium. In order to repress methane 
formation, 120µl of iodoform solution (20 g CHL3 in 1000 ml ethanol) was added every 48 h throughout the 



DYSONA – Applied Science 2 (2021) 21-27  Shalsh et al.  

 23  
 

fermentation [24]. Since the maximum pressure limit of the fermenter is 
2atm, a daily gas venting was performed to prevent fermenter explosions. 
The experiment was conducted at a temperature of 48 ºC for 12days. To 
monitor the fermentation process, the fermenter was vented using a 
syringe attached to an air-tight tube connected to a water column filled 
with 70% ethanol. If the pH dropped to less than 7.0, ammonium 
bicarbonate was used to re-neutralize the medium. After fermentation, 3 
ml sample of the fermented sorghum biomass was collected for later 
analysis. 

2.4. Analytical methods  

Moisture content for sorghum biomass and the final fermentation solid 
residue was determined by placing 5 g of the milled white sorghum 
biomass (1:1:0.5 stalk: leaves: seeds) in the oven at 105 °C for 2 h until an 
observed constant weight. Moisture percentage was then calculated from 
the difference between the initial weight and the dry weight [30][31]. Dry 
Matter percentage was calculated as 100 - moisture content percentage. 

Ash content for the white sorghum biomass mixture and final 
fermentation solid residue was calculated after 4 hours in the furnace at 
550 °C as described by [18].  

Ash(%) = Ash weight
Sample weight

× 100                   (1) 

The volatile matter of white sorghum biomass mixture and final 
fermentation solid residue was calculated as described by [24][26].  

Volatile  matter (VM) content = Oven dry weight−Ash weight 
Oven dry weight

        (2)  

Percentage of volatile matter (PVM) was calculated using the equation [30]: 

PVM = VM × 100                                       (3) 

The percentage of fixed carbon (PFC) was computed by subtracting the sum of PVM and PAC (percentage ash content) 
from 100, as shown in equation (4) [32]. 

PFC = 100% - (PAC+PVM)                        (4) 

Sorghum  biomass conversion ratio = volatile solid (VS)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
volatile solid (VS)𝑓𝑓𝑓𝑓𝑓𝑓

       (5) 

Yields of carboxylic acid = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
volatile solid (VS) 𝑓𝑓𝑓𝑓𝑓𝑓

               (6) 

The content of total carbohydrates in white sorghum biomass was analyzed using the methods described by [30][33]. 

2.5. Gas chromatography-mass spectrometry (GC-MS) analysis  

GC-MS was used to determine carboxylic compounds in sorghum biomass mixture hydrolysate [26][25]. For this 
purpose, A GC-MS instrument (GC-17A Ver.3 Shimadzu, Japan) equipped with an SGE BP21 25 m x 0.33 mm x 0.25μm 
column was used. Sampling time was 1 min injection with an initial temperature of 200 °C and an interface 
temperature of 250 °C. Control mode was splitless, and column inlet pressure was 15.0 kPa with a flow of 2.2 mL/min. 
Linear velocity was 58.4 cm/sec, and the split ratio was 10. A library search was carried out to identify the 
chromatographic peaks with consideration to the standards (0.50 mg/mL) that were run at the beginning and the end 
of the sample set. 

 

Figure 1. MixAlco fermentation process in 
LAMBDA MINIFOR bioreactor. 
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3. Results and Discussion 

3.1. White sorghum sample analysis       

The analysis of white sorghum powder showed that it had a low 
moisture content (7.92%), and a low ash content (2.8%) which 
indicates that it can burn off easily in bioconversion prosses (Table 
1). The low moisture content is critical in preserving sorghum 
during storage due to its association with biological factors that 
cause post-harvest damage and negatively influence nutritional 
and economic values. The current results are in accordance with 
other studies such as [34], who reported a moisture content range 
between 7.28% and 11.57% and lower than other studies such as 
[35] who reported a moisture range of 11 to 21 %. Furthermore, 
white sorghum ash content was reported to range from1.3% to 
3.3% [36][37], which puts the current results within the normal 
range.  

The analysis showed that 75.27% of the total powder weight was constituted of volatile matter. It was previously 
reported that the main volatile compounds in biomass were alcohols, alkanes, aldehydes, esters, aldehydes, carboxylic 
acids, ketones, pyrazines, and phenylenediamine [32], which individually affected by the used processing techniques 
[23]. The current result was higher than that of [14], who reported 63% total volatile matter. Similar to low moisture 
content, the high PVM value signifies an easy ignition of the biomass. 

The total dry matter of white sorghum (92.37%) is within the range reported by [36] (96.20% to 97.5%). Fixed 
carbon is the amount of combustible solids content in fuel after the removal of volatile matter. The current result 
(21.06%) is comparable to the (19.06%) for wheat straw obtained by [31]. Carbohydrate content was 68% which is 
lower than that reported in sorghum biomass used in [38]. The primary carbohydrate compounds of sorghum is 
lignocellulose which, because of its high carbon content, can produce energy via heat or chemical processes. 

 3.2. Fermentation experiment 

MixAlco route has utilized the growth of natural microbial community coexisting with sorghum biomass. The treated 
white sorghum biomass and chicken manure are easily digested via microorganisms [37]. During MixAlco process,  
fractions of the biodegradable biomass waste are utilized to produce enzymes that hydrolyze the cellulose into 
monomers such as glucose which is converted to volatile acids and alcohols due to the fermentation process. 
However, the involved enzymes action might be inhibited by the hydrolysis endproducts, through thermal 
denaturation, or due to absorption by natural sorghum components such as lignin [39]. Therefore, it is imperative to 
maintain certain fermentation conditions and use a proper material combination. 

The result of the used batch fermentation parameters was calculated (Table 2). GC-MS analysis showed that the total 
acid concentration was 21.0 g/l with a conversion rate of 54.4% and a yield of 34%.  The acid yield is the ratio of 
volatile solids in the substrate fed to the fermentor and converted to mixed acids due to the fermentation procedure. 
On the other hand, conversion rate refers to the digested volatile solids throughout fermentation from the total input 
volatile solids, which means that in the current study, more than half of sorghum biomass was converted to products 
such as volatile acids. Acetic acid constituted 54% of the total produced acids, followed by propionic acid with 26% 
and ethanol with 20%. Carboxylic acids production is a survival strategy attributed to the fact that when sources of 
energy and nutrients are available in abundance, the microbial community tend to produce compounds that can be 
utilized in periods of starvation [40]. Other compounds were detected via GC-MS analysis; however, they were present 
in insignificant concentrations such as G,5-Furandione, dihydro-3-methylene-, 2-Furancarboxaldehyde, 5-methyl-, 
Hydrogen chloride, Furfural, Cyclopentasiloxane, and decamethyl.  

Table 1. The analysis results of white sorghum 
powder composed of 1:1:0.5 stalk: leaves: seeds. 

Parameter  Value % 
Moisture content  7.92 
Dry matter (%)  92.37 
Percentage volatile matter (PVM) 75.27 
Percentage Fixed Carbon (PFC) 21.06 
Percentage ash content (PAC)  2.8 
Carbohydrate content  68 
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Previously, batch culture fermentation of treated bagasse (80%) and chicken manure (20%) resulted in a total 
carboxylic acid concentration of 56.1 g/L, which is the highest ever recorded using MixAlco method in a rotary 
fermenter with a conversion rate of 44% [24]. The second highest report was 40.8 g/L of total acid concentration with 
lime-treated rice straw (80%) and chicken manure (20%) [13]. On the other hand, a fermentation medium of swine 
manure (60%) and lime-treated corn stover (40%) resulted in the highest recorded conversion ratio (73%) with an 
acid concentration of 25.1 g/L [25].    

4. Conclusion 

In the current study, the biological transformation of white sorghum biomass was performed under operating 
conditions similar to the MixAlco process. The fermentation process resulted in a total carboxylic acid concentration 
of 21.03 g /L with a conversion of 54.4% of the digested biomass. The fermentation products were mainly constituted 
of acetic acid (54%), propionic acid (26%), and ethanol (20%). Therefore, replicating the current reported conditions 
at a commercial level is highly recommended to use the agricultural wastes of both sorghum cultivation and chicken 
industry and to support the energy sector. 
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