The effect of biocide 2 CHIMEC 7660 on N80 steel corroded by bacterial corrosion

Document Type: Original Article


Department of Mechanical Engineering, Faculty of Science and Technology, University of Biskra, Algeria


Bacterial corrosion is the phenomenon where sulfate-reducing bacteria (SRB) metabolic acts help creating favorable conditions for corrosion to occur. This type of corrosion is widely observed in anaerobic industrial environments especially in petroleum pipelines and might result in severe losses in oil and gas industries. Many commercial substances are used in the petroleum industry in order to control this phenomenon. Here, we tried to evaluate the effectiveness of using Biocide 2 CHIMEC 7660 in later phase bacterial corrosion on N80 steel. In order to achieve that aim, N80 steel samples were put in an anaerobic simulation in the presence of (SRB) and after 60 days of bacterial exposure, Biocide 2 CHIMEC 7660 was added to treated samples. The experiment was then continued for another 30 days, where the surfaces of control and treated samples were studied using scanning electronic microscope (SEM) and energy-dispersive X-ray spectrometry (EDS). (SEM) scans showed an efficient removal of a large part of the deposits and colonies on treated surfaces compared to control. However, both samples (EDS) analysis illustrated the presence of oxygen and an increased amount of sulfur. Although biocide application was efficient enough to control bacterial growth and eliminate the forming residues after 60 days of exposure to (SRB), the bacterial corrosion occurred before the treatment was enough to cause damage to the studied surface. This study refers to the effectiveness of using Biocide 2 CHIMEC 7660 and emphasizes on its early application.


  1. Marconnet C, Dagbert C, Roy M, Féron D. Comportement d’aciers inoxydables en eaux naturelles. Mater. Tech. 2005;93:s-83. DOI
  2. Maluckov BS. Corrosion of steels induced by microorganisms. Metall. Mater. Eng. 2012;18(3):223-32.
  3. Chantereau J, Bouffard AM. Corrosion bactérienne-bactéries de la corrosion. 1977.
  4. Videla HA, Herrera LK. Microbiologically influenced corrosion: looking to the future. Int. Microbiol. 2005;8(3):169.
  5. Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl. Environ. Microbiol. 2003;69(8):4910-4. DOI
  6. King RA, Miller JD. Corrosion by the sulphate-reducing bacteria. Nature. 1971;233(5320):491-2. DOI
  7. Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 2014;80(4):1226-36. DOI
  8. Santegoeds CM, Ferdelman TG, Muyzer G, de Beer D. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol. 1998;64(10):3731-9.
  9. Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000;64(4):847-67. DOI
  10. Busscher HJ, van der Mei HC. Microbial adhesion in flow displacement systems. Clin. Microbiol. Rev. 2006;19(1):127-41. DOI
  11. Galvão M, Lutterbach MT. Application of the qPCR technique for SRB quantification in samples from the oil and gas industries. Applications of molecular microbiological methods. Skovhus TS, Caffrey SM and Hubert CRJ (eds.), Caister Academic Press. 2014;215:69-77.
  12. Hulak I. Protection contre la dégradation et la prolifération des microorganismes. XXIIe Journée Technologique. Les polymères à usage médical. 1999.
  13. Uliasz M. Wykorzystanie związków aminowych w technologii płuczek wiertniczych. Nafta-Gaz. 2010;66(7):577-85.
  14. Turkiewicz A, Brzeszcz J, Kapusta P. The application of biocides in the oil and gas industry. Nafta-Gaz. 2013;69(2):103-11.
  15. Tanner RS. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods. 1989;10(2):83-90. DOI
  16. Normand B. Prévention et lutte contre la corrosion: Une approche scientifique et technique. PPUR presses polytechniques; 2004.
  17. Koschorreck M. Microbial sulphate reduction at a low pH. FEMS Microbiology Ecology. 2008;64(3):329-42. DOI
  18. De Beer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and bioengineering. 1994;43(11):1131-8. DOI
  19. Marty D, Bertrand JC, Caumette P. Les métabolismes bactériens dans les systèmes sédimentaires marins. Microorganismes dans les écosystèmes océaniques. Masson, Paris, France. 1989:101-51.
  20. Prithiraj A, Otunniyi IO, Osifo P, van Der Merwe J. Corrosion behavior of stainless and carbon  steels exposed to sulphate–reducing bacteria from industrial heat exchangers. Engineering Failure Analysis. 2019;104:977-86. DOI